168 / 2019-12-15 14:36:00
Revealing correlations between canonical correlation and correlation coefficient among signal components from multiple datasets
canonical correlation analysis (CCA); canonical correlation coefficients; array signal processing
摘要待审
Enlong Hu / New Jersey Institute of Technology, USA
Hongya. Ge / NJIT, USA
In this work, we provide a study of canonical correlation analysis (CCA) of data sets from two spatially separated arrays of sensors. Our case studies cover multiple source signals in white noise fields for array signal processing.
The result shows the formula for single source in colored noise also applies to the case of multiple sources in white noise, as long as we factor out the signal of interest component (SOI) when analyzing canonical correlation coefficients. The analytical expression for the canonical correlation coefficients is derived as a function of nominal correlation and signal-to-noise ratio(SNR). Furthermore, we use a direction-of-arrival (DOA) estimation example to show there is a connection between CCA and estimation of signal parameters via rotational invariant techniques (ESPRIT).
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询