199 / 2019-12-30 11:34:00
Principal Component Analysis Based Kullback-Leibler Divergence for Die Crack Detection
PCA; data fusion; Gaussian distribution; die crack; K-L divergence; state index
全文被拒
Sha Wei / Shanghai Jiao Tong University, China
Zhike Peng / Shanghai Jiaotong University, China
Dong Wang / Shanghai Jiao Tong University & The State Key Laboratory of Mechanical Systems and Vibration, China
Die crack is a vital issue that directly influences the quality of chip assemblies. In this paper, we focus on detecting die cracks using principal component analysis (PCA) and Kullback-Leibler(K-L) divergence. Our method involves data fusion, including three steps: 1) apply PCA to convert high-dimensional data to low-dimensional data; 2) obtain the frequency distribution histograms of the transformed data and fit them; 3) use K-L Divergence based state index to quantitatively evaluate die crack. Our method works very well with real-life data. Die crack is identified according to die crack data showing skewed distribution, while normal data have Gaussian distribution. Moreover, the proposed state index could successfully detect die cracks.
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询