200 / 2019-12-30 13:56:00
Compressive Sensing-based Adaptive Beamforming
全文被拒
Jian Lu / Rocket Force University of Engineering, China
Jian Yang / Xidian University, China
Bo Hou / Rocket Force University of Engineering, China
In the digital beamforming, each antenna sensor usually corresponds to a front-end chain, which dramatically increases the hardware costs. In this paper, compressive sensing-based adaptive beamforming is proposed to decrease the hardware complexity while effectively suppressing the interfering signals. Compressive sensing is utilized to reduce the sampling channel number, and sparse reconstruction based on the convex optimization model is used to accurately recover the full-array data. With the recovered data, the weight vector can be obtained by the robust adaptive beamforming. Simulation results demonstrate that the number of front-end chains is greatly reduced and the overall performance of the proposed beamforming is close to the optimal value. Moreover, the main-lobe width and sidelobe levels can be effectively cut down by improving the degrees-of-freedom of the beamforming.
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询