24 / 2019-12-06 06:56:00
Sparse Subspace Clustering with Linear Subspace-Neighborhood-Preserving Data Embedding
sparse subspace clustering; compressive sensing; sparse representation; dimensionality reduction; embedding; L1-minimization
摘要待审
Jwo-Yuh Wu / National Chiao Tung University, Taiwan
Liang-Chi Huang / National Chiao Tung University, Taiwan
Wen-Hsian Li / National Chiao Tung University, Taiwan
Chun-Hung Liu / Mississippi State University, USA
Rung-Hung Gau / National Chiao Tung University, Taiwan
Data dimensionality reduction via linear embedding is a typical approach to economizing the computational cost of machine learning systems. In the context of sparse subspace clustering (SSC), this paper proposes a two-step neighbor identification scheme using linear neighborhood-preserving embedding. In the first step, a quadratically-constrained L1-minimization algorithm is solved for acquiring the side subspace neighborhood information, whereby a linear neighborhood-preserving embedding is designed accordingly. In the second step, a LASSO sparse regression algorithm is conducted for neighbor identification using the dimensionality-reduced data. The proposed embedding design explicitly takes into account the subspace neighborhood structure of the given data set. Computer simulations using real human face data show that the proposed embedding not only outperforms other existing dimensionality-reduction schemes but also improves the global data clustering accuracy when compared to the baseline solution without data compression.
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询