269 / 2020-01-05 00:16:00
Cutset-type possibilistic c-means clustering image segmentation algorithm based on spatial neighborhood information
全文被拒
Meng Xin / School of Electronic Engineering, Xidian University, China
The cutset-type possibilistic c-means clustering (C-PCM) algorithm overcomes the coincident clustering problem of the possibilistic C-means clustering (PCM) algorithm by introducing the cut-set concept to modify the typicalities values. However, when the algorithm is applied to image segmentation, the algorithm does not consider the neighborhood information, which results in poor algorithm for noise image segmentation. This paper proposes a cutset-type possibilistic c-means clustering image segmentation algorithm based on spatial neighborhood information. The algorithm optimizes the typical values of pixels in the iterative process by utilizing the neighborhood information of each pixel in the image to correct some typicality values, thus improving the ability of typical values to characterize pixel correlation and improve performance of image segmentation. The simulation results show that the proposed algorithm can separate the target and background clearly for noisy images, especially for small target images.
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询