297 / 2020-01-05 22:50:00
Adaptive Relative Newton Method for Blind Sparse Source Separation
全文被拒
Nacerredine Lassami / Ecole Militaire Polytechnique, Algeria
Abdeldjalil A飐sa-El-Bey / IMT Atlantique, France
Karim Abed-Meraim / University of Orleans & PRISME Lab., France
This paper considers the problem of Blind Source Separation (BSS). Most of the proposed BSS techniques rely on the assumption that source signals are independent or at least uncorrelated. Unfortunately, these assumptions are not true in many applications where source signals usually show slight or strong dependence. In this paper, we propose to use the sparsity of signals which can be in the time domain or in a transformed domain, as a contrast tool to separate possibly dependent source signals. In particular, we investigate the adaptive context where the mixing matrix changes over time. The proposed algorithm which is based on the relative newton method, guarantees low computational complexity necessary in the adaptive case. Numerical simulations have shown the superiority of our algorithm as compared to the state of the art solutions.
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询