314 / 2020-01-06 10:54:00
A Bayesian Sparsity-regularization Approach in Low-frequency Acoustic Localisation
acoustic localization; Bayesian sparsity regularization; prior information; high-resolution
全文被拒
Ning Chu / Zhejiang University & Hangzhou, China
Yue Ning / Zhejiang University, China
Liang Yu / Shanghai Jiaotong University, China
Acoustic localization is often difficult to obtain high-resolution results for low-frequency source. This paper presents a Bayesian sparsity-regularization approach to solve the above problem to some extent. Such a sparsity prior distribution is a probability hypothesis added to unknown targets. This paper implements Student-t prior to sparsity regularization. In this sense, more physical information is properly added to make the ill-posed inverse problem less uncertainty and more meaningful in modeling. Through simulations and experiments, proposed approach can obtain more robust localization at as low as 1000Hz Hz with -1dB SNR.
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询