328 / 2020-01-06 13:52:00
Memory-Based Neural Network for Radar HRRP Noncooperative Target Recognition
摘要待审
Ying Jia / Xidian University, China
Bo Chen / Xidian University, China
Long Tian / Xidian University, China
Chen Wenchao / Xidian University, China
In this paper, we propose a Memory-Based Discriminative module(MMBD) for Radar Automatic Target Recognition (RATR) based on High Resolution Range Profile (HRRP) in imbalanced case to learn how to find out the discriminative representations and generalize the ability to barely appeared target samples of some categories. Specifically, we utilize CNN to explore discriminative features among HRRP samples and employ the memory module to record misclassified samples or samples that are correctly classified with low confidence into a external storage, we called it buffer. Then we leverage a Bi-LSTM to merge the classified samples with the most similar ones in the buffer to make the final decision. It is worth noting that MMBD can be inserted as a plug-and-play module into any discriminative methods. Effectiveness and efficiency are evaluated on the measured data.
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询