Persymmetric Subspace Rao and Wald Tests for Distributed Target in Partially Homogeneous Environment
编号:134 访问权限:仅限参会人 更新:2020-08-05 10:17:28 浏览:440次 口头报告

报告开始:2020年06月08日 15:40(Asia/Shanghai)

报告时间:20min

所在会场:[S] Special Session [SS07] Advanced Techniques In Radar Detection, Localization, And Electronic Counter-Measures

视频 无权播放

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
We consider the problem of distributed target detection in partially homogeneous Gaussian clutter with unknown covariance matrix. The target is assumed to lie in a multi-rank subspace with unknown coordinates. By incorporating the persymmetric structure of the covariance matrix into the detector design, we devise a persymmetric subspace Rao detector (Per-Rao) and a persymmetric subspace Wald detector (Per-Wald). It is remarkable that the Per-Rao coincide with the Per-Wald in the partially homogeneous environment, and both detectors are shown to ensure constant false alarm rate (CFAR) with respect to the covariance matrix. Numerical examples verify the superiority of the proposed methods in training-restricted situations.
关键词
Adaptive detection; Rao test; Wald test; distributed target; non-homogeneity
报告人
Yongchan Gao
Xidian University, China

稿件作者
Yongchan Gao Xidian University, China
Linlin Mao Institute of Acoustics, Chinese Academy of Sciences, China
Hongbing Ji School of Electronic Engineering, Xidian University, China
Liyan Pan Xidian University, China
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询