POPLAR: Parafac2 decOmPosition using auxiLiAry infoRmation
编号:147 访问权限:仅限参会人 更新:2020-08-05 10:17:28 浏览:480次 口头报告

报告开始:2020年06月08日 14:20(Asia/Shanghai)

报告时间:20min

所在会场:[S] Special Session [SS04] Structured Tensor And Matrix Methods For Sensing, Communications, And Machine Learning

视频 无权播放

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
PARAFAC2 is a powerful method for analyzing multi-modal data consisting of irregular frontal slices. In this work, we propose POPLAR method that imposes graph Laplacians constraints induced by the similarity symmetric tensor as auxiliary information to force decomposition factors to behave similarly and the method is developed using AO-ADMM for 3-way PARAFAC2 tensor decomposition. To the best of our knowledge, POPLAR is the first approach to incorporate graph Laplacians constraints using auxiliary information. We extensively evaluate \method's performance in comparison to state-of-the-art approaches across synthetic and real datasets and POPLAR clearly exhibits better performance with respect to the Fitness (better 3-8%), and F1 score (better 5-20%) among the state-of-the-art factorization method. Furthermore, the running time for the method is comparable to the state-of-art method.
关键词
PARAFAC2 Decomposition; Tensor
报告人
Ekta Gujral
University of California, Riverside, USA

稿件作者
Ekta Gujral University of California, Riverside, USA
Georgios Theocharous Adobe Inc, USA
Evangelos Papalexakis University of California Riverside, USA
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询