A Sparse Learning Based Detector with Enhanced Mismatched Signals Rejection Capabilities
编号:158 访问权限:仅限参会人 更新:2020-08-05 10:17:28 浏览:425次 口头报告

报告开始:2020年06月08日 14:20(Asia/Shanghai)

报告时间:20min

所在会场:[S] Special Session [SS07] Advanced Techniques In Radar Detection, Localization, And Electronic Counter-Measures

视频 无权播放

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
This paper devises a detection architecture capable of rejecting mismatched signals embedded in Gaussian interference with unknown covariance matrix based on a sparse recovery technique. Specifically, a sparse learning method is exploited to estimate the amplitude and target angle of arrival, which are then employed to design detectors relying on the two-stage detection paradigm. Remarkably, the new decision scheme exhibits a bounded-constant false alarm rate property. The performance assessment, carried out by Monte Carlo simulations, shows that the new detectors can outperform the existing ones in terms of rejecting mismatched signals, while retaining reasonable detection performance for matched signals.
关键词
暂无
报告人
Sudan Han
National Innovation Institute of Defense Techonology, China

稿件作者
Sudan Han National Innovation Institute of Defense Techonology, China
Luca Pallotta University of Roma Tre, Italy
Gaetano Giunta University of Roma Tre, Italy
Wanli Ma National Innovation Institute of Defense Technology, China
Danilo Orlando Universita' degli Studi Niccolo' Cusano, Italy
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询