A New Hyperspectral Compressed Sensing Method for Efficient Satellite Communications
编号:169 访问权限:仅限参会人 更新:2020-08-05 10:17:28 浏览:577次 口头报告

报告开始:2020年06月08日 14:40(Asia/Shanghai)

报告时间:20min

所在会场:[S] Special Session [SS13] Unsupervised Computing And Large-Scale Optimization For Multi-Dimensional Data Processing

暂无文件

摘要
Directly transmitting the huge amount of typical hyperspectral data acquired on satellite to the ground station is inefficient. This paper proposes a new compressed sensing strategy for hyperspectral imagery on spaceborne sensors systems. As the onboard computing/storage resources are limited, e.g., on CubeSat, the measurement strategy should be computationally very light. Furthermore, considering the limited communication bandwidth, a very low sampling rate is desired. Our encoder accounts for these requirements by separately recording the spatial details and the spectral information, both of which essentially require only simple averaging operators. Our measurement strategy naturally induces a reconstruction criterion that can be elegantly interpreted as a well-known fusion problem in satellite remote sensing, allowing the adoption of a convex optimization method for simple and fast decoding. Our method, termed spatial/spectral compressed encoder (SPACE), is experimentally evaluated on real hyperspectral data, showing superior efficacy in terms of both sampling rate and reconstruction accuracy.
关键词
compressed sensing; hyperspectral imagery; spaceborne sensors systems; measurement strategy
报告人
Chia-Hsiang Lin
National Cheng Kung University, Taiwan

稿件作者
Chia-Hsiang Lin National Cheng Kung University, Taiwan
Jose Bioucas Instituto de Telecomunicoes, Portugal
Tzu-Hsuan Lin National Cheng Kung University, Taiwan
Yen-Cheng Lin National Cheng Kung University, Taiwan
Chi-Hung Kao National Cheng Kung University, Taiwan
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询