Mitigating Outliers for Bayesian Mixture of Factor Analyzers
编号:73 访问权限:仅限参会人 更新:2020-08-05 10:17:00 浏览:525次 口头报告

报告开始:2020年06月09日 14:15(Asia/Shanghai)

报告时间:15min

所在会场:[R] Regular Session [R02] Compressed Sensing and Sparse Signal Processing

视频 无权播放

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The Bayesian mixture of factor analyzers (BMFA), which achieves joint clustering and dimensionality reduction, is with an appealing feature of automatic hyper-parameter learning. In addition to its great success in various unsupervised learning tasks, it exemplifies how the Bayesian statistics can be leveraged to achieve automatic hyper-parameter learning, which is an open problem of modern simultaneous (deep) dimensionality reduction and clustering. Due to the importance of the BMFA, in this paper, its mechanism is carefully investigated, and a robust variant of the BMFA that can mitigate potential outliers is further proposed. Numerical studies are presented to show the remarkable performance of the proposed algorithm in terms of accuracy and robustness.
关键词
暂无
报告人
Zhongtao Chen
The Chinese University of Hong Kong, Shenzhen & Shenzhen Research Institute of Big Data, China

稿件作者
Zhongtao Chen The Chinese University of Hong Kong, Shenzhen & Shenzhen Research Institute of Big Data, China
Lei Cheng Shenzhen Research Institute of Big Data, Chinese University of Hong Kong (Shenzhen), Hong Kong
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询