Research and Application on Power Generation Safety Monitoring and Cloud Platform
编号:108 访问权限:仅限参会人 更新:2020-10-28 19:23:07 浏览:328次 口头报告

报告开始:2020年11月04日 10:45(Asia/Shanghai)

报告时间:15min

所在会场:[A] Power System [A4] Session 21 and Session 26

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Aiming at the problem that the traditional monitoring mode of power generation can’t monitor the normative behavior of operators as well as realize the comprehensive monitoring and intelligent decision-making analysis of power generation safety, this paper applies cloud platform, real-time database, OpenPose and TensorFlow to the power generation safety management system to monitor and manage the operation process of staff. The research shows that the application of cloud computing and deep learning technology in power generation safety monitoring system can significantly improve the compatibility, real-time performance and supervision ability of the system, and ensure the accuracy and recognition rate of data.
关键词
Power generation safety,Real-Time Monitoring,cloud platform
报告人
peiwen sun
Huazhong University of Science and Technology;School of Electrical and Electronic Engineering

稿件作者
peiwen sun Huazhong University of Science and Technology;School of Electrical and Electronic Engineering
jiawei wang Huazhong University of Science and Technology;School of Electrical and Electronic Engineering
Yijin Xu Huazhong University of Science and Technology;School of Electrical and Electronic Engineering
lingyun wang Huazhong University of Science and Technology;School of Electrical and Electronic Engineering
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月02日

    2020

    11月04日

    2020

  • 10月27日 2020

    初稿截稿日期

  • 11月03日 2020

    报告提交截止日期

  • 11月04日 2020

    注册截止日期

  • 11月17日 2020

    终稿截稿日期

主办单位
IEEE IAS Student Chapter of Huazhong University of Science and Technology (HUST)
承办单位
Huazhong University of Science and Technology
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询