Research on Deep Learning-based Deraining Method of Catenary Images
编号:260 访问权限:仅限参会人 更新:2021-12-03 10:54:03 浏览:510次 张贴报告

报告开始:2021年12月17日 14:50(Asia/Shanghai)

报告时间:5min

所在会场:[Z] Poster Session [Z6] Poster Session 6: AI-driven technology

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
In heavy rain, the catenary images collected by railway detection devices have a severe noise problem. The rain streaks in the image significantly affect the image quality, decreasing the accuracy and efficiency of the automatic identification of catenary components. Therefore, this paper proposes a deep learning-based deraining method of blurry catenary images under heavy rain to solve the problem. This method adopts a two-stage architecture, consisting of the encoder-decoder structure and single-scale convolution, respectively. And a supervised attention module is added to every stage to improve feature transmission efficiency. The experiment results prove that our method can effectively improve the accuracy of component positioning.
关键词
Catenary; Deep learning; Supervised attention module; Image deraining; Component positioning
报告人
Weiping Guo
Southwest Jiaotong University

稿件作者
Weiping Guo Southwest Jiaotong University
Hui Wang Southwest Jiaotong University
Lina Mao Beijing Jiaotong University
Zhiwei Han Southwest Jiaotong University
Zhigang Liu School of Electrical Engineering; Southwest Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月11日

    2023

    08月18日

    2023

  • 11月10日 2021

    初稿截稿日期

  • 12月10日 2021

    注册截止日期

  • 12月11日 2021

    报告提交截止日期

主办单位
IEEE IAS
承办单位
IEEE IAS Student Chapter of Southwest Jiaotong University (SWJTU)
IEEE IAS Student Chapter of Huazhong University of Science and Technology (HUST)
IEEE PELS (Power Electronics Society) Student Chapter of HUST
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询