A Non-intrusive Method Based on Deep Learning for Abnormal Electricity Consumption Detection of Electric Bicycles
编号:282 访问权限:仅限参会人 更新:2021-12-03 13:17:07 浏览:581次 口头报告

报告开始:2021年12月15日 15:30(Asia/Shanghai)

报告时间:15min

所在会场:[F] AI-driven technology [F1] Session 6

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Abnormal electricity consumption of electric bicycles has given rise to many severe accidents (e.g., explosion and fire accidents). Primary causes of these accidents are users’ incorrect charging behavior and lack of stipulated safety standard designed for different charging devices. From utility’s perspective, it is of great importance to detect abnormal electricity consumption of electric bicycles in a non-intrusive way considering the customers’ privacy concern. Therefore, this paper proposed a non-intrusive method based on deep learning for abnormal electricity consumption detection of electric bicycles. Firstly, charging curve and charging process of electric bicycles are studied. Then customers’ electricity consumption data is analyzed, the missing values are filled in and the outliers are removed to prepare dataset. Afterwards, convolutional neural network (CNN) model is constructed and trained to identify the abnormal data. Finally, results of CNN model are compared with deep neural network (DNN) and other machine learning techniques in order to demonstrate the effectiveness of this method.
关键词
charging behavior;deep learning;electric bicycles;non-intrusive method
报告人
Xuecen Zhang
Student Southeast University

稿件作者
Junnan Li State Grid Henan Marketing Service
Wei Li State Grid Henan Marketing Service
Xuecen Zhang Southeast University
Yi Tang Southeast University
Xinming He State Grid Henan Marketing Service
Wei Tai Nanjing Dongbo Smart Energy Research Institute
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月11日

    2023

    08月18日

    2023

  • 11月10日 2021

    初稿截稿日期

  • 12月10日 2021

    注册截止日期

  • 12月11日 2021

    报告提交截止日期

主办单位
IEEE IAS
承办单位
IEEE IAS Student Chapter of Southwest Jiaotong University (SWJTU)
IEEE IAS Student Chapter of Huazhong University of Science and Technology (HUST)
IEEE PELS (Power Electronics Society) Student Chapter of HUST
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询