Counterfactual Faithful Data Generation Based on Disentangled Representation for Compound Fault Diagnosis of Rolling Bearings
编号:65 访问权限:公开 更新:2022-12-22 00:54:43 浏览:492次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

摘要
Recently, deep learning and human-out-of-the-loop methods enjoy their prosperous applications in mechanical fault diagnosis. Nonetheless, the None-IID(independent and identically distributed) issue radicated in acquired data severely limits the stability and accuracy of compound fault diagnosis of rolling bearings. This paper proposes a sample augmentation method for generating simulated signals based on the concept of counterfactuals. Firstly, disentangled representations and counterfactual faithful theory are applied to classify the original signal into two categories of properties. One is the fault semantics encoded from the original vibration signal. And the other is the sample attribute encoded by the encoder of Variational Autoencoders (VAEs). Secondly, the counterfactual faithful pseudo-samples are conjured through the Generative Adversarial Network(GAN) using the seeds of the “factual” sample attributes and “counterfactual” fault semantics to compensate for the drawback of distribution shift. Finally, the original samples and pseudo-samples are used as the CNN classifier dataset to realize bearing fault diagnosis. Experiments show that this method can generate counterfactual signals that are highly consistent with the original data distribution and can achieve better classification accuracy after balancing the dataset.
关键词
rolling bearing;fault diagnosis;counterfactual faithfulness;structural causal model;VAEGAN
报告人
Qiang Zhu
student Hefei University of Technology

2016.9-2020.6 Bachelor Degree, School of Mechanical Engineering, Anhui University of Technology.
2020.9-23.6 Master Degree, School of Mechanical Engineering, Hefei University of Technology.

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月30日

    2022

    12月02日

    2022

  • 11月30日 2022

    初稿截稿日期

  • 12月24日 2022

    报告提交截止日期

  • 04月13日 2023

    注册截止日期

主办单位
Harbin Insititute of Technology
China Instrument and Control Society
Heilongjiang Instrument and Control Society
Chinese Institute of Electronics
IEEE I&M Society Harbin Chapter
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询