Few-label learning for fault diagnosis based on contrastive representations
编号:72 访问权限:仅限参会人 更新:2022-12-23 00:41:36 浏览:564次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
It is a common scenario in industrial applications that though a large amount of monitoring data of mechanical machines are available, only a few of them are labeled due to the lack of expert knowledge and labor. This leads to the difficulty of developing powerful supervised fault diagnosis methods, which requires a relatively large fully-labeled dataset containing machine monitoring data collected under healthy and different faulty states. In terms of this issue, a novel few-label learning method for fault diagnosis is proposed in this work, which can first learn useful representations from a large amount of unlabeled data with the help of a contrastive learning technique, based on which a fault diagnosis model can be constructed with the support of only a few labeled data. To validate the effectiveness of The proposed method is applied to a benchmark bearing fault diagnosis dataset to validate its effectiveness in few-label scenarios. Results show that the proposed method obtains better accuracy than other state-of-the-art methods.
关键词
fault diagnosis, few-label scenario, contrastive learning, residual network
报告人
Zhe Yang
Dr.Yang Dongguan University of Technology

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月30日

    2022

    12月02日

    2022

  • 11月30日 2022

    初稿截稿日期

  • 12月24日 2022

    报告提交截止日期

  • 04月13日 2023

    注册截止日期

主办单位
Harbin Insititute of Technology
China Instrument and Control Society
Heilongjiang Instrument and Control Society
Chinese Institute of Electronics
IEEE I&M Society Harbin Chapter
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询