109 / 2023-04-30 09:18:47
Distribution of flame retardants among indoor dust, airborne particles and vapour phase from Beijing: spatial–temporal variation and human exposure characteristics
Flame retardants,Multi-matrix,Spatial and temporal variation,Exposure patterns,Health risk assessment
摘要待审
张亚彩 / 河南师范大学
曹治国 / 河南师范大学
The occurrence and distribution of 10 brominated flame retardants (BFRs) and 10 organophosphate flame retardants (OPFRs) were investigated in indoor dust, total suspended particles (TSP), and vapour phase from offices (n = 10), homes (n = 9), and day-care centres (n = 10) in Beijing, China. Three types of samples were collected biweekly from one office and one home over a year to examine temporal trends. BFRs in dust significantly correlated with those in TSP, while OPFRs significantly correlated among all three matrices. In addition, BFRs in dust (ng/g) and TSP (pg/m3) exhibited similar temporal trends with higher levels in the cold season, whereas OPFRs in TSP and vapour phase (pg/m3) showed similar temporal trends with higher levels in the warm season. The geometric mean concentrations of BFRs and OPFRs in the three matrices from the above mentioned three types of indoor microenvironments were used for exposure and health risk estimation, and Σ7OPFRs showed much higher hazard index (HI) values than Σ10BFRs for all subpopulations, and inhalation of OPFRs was a major risk source. With the volatility of flame retardants (FRs) decreasing, the contribution of dust ingestion and dermal absorption showed an increasing trend, and the contribution of inhalation exhibited a gradual decreasing trend, which implied the dominant exposure pathway to FRs is strongly related to the vapour pressure (25 ◦C, Pa) of these substances. Using a single type of microenvironment or the collection of samples at a single point in time can lead to overestimation or underestimation of overall exposure and risk for people to some extent. The correlations of FRs in dust, TSP, and vapour phase from indoor microenvironments, as well as their temporal trends were first reported in this study, which will provide a basis for more accurate FR exposure assessments in the future.
重要日期
  • 会议日期

    06月16日

    2023

    06月18日

    2023

  • 03月01日 2023

    提前注册日期

  • 06月16日 2023

    初稿截稿日期

  • 06月18日 2023

    注册截止日期

主办单位
北京大学环境科学与工程学院
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询