419 / 2024-03-30 22:53:59
A Text-Guided Deep Learning Approach for Efficient Maceral Analysis
Coal,Maceral Analysis,Deep learning,Multi-modal
全文录用
浩宇 张 / 中国矿业大学
This research pioneers a text-guided deep learning approach for the efficient and precise identification of maceral components in coal, addressing the challenges of sparse data and unbalanced categories. Leveraging advancements in information technology, particularly deep learning and natural language processing, this method surpasses traditional manual inspection techniques in speed, accuracy, and objectivity. By integrating image and text information, the study enhances the analysis of coal rock microscopic images, significantly contributing to the clean and efficient utilization of coal resources. Experimental results, validated through metrics like mean pixel accuracy (mPa) and mean intersection over union (mIou), demonstrate the method's effectiveness over conventional approaches. This work marks a significant advancement in coal petrology, offering new perspectives for sustainable energy production.
重要日期
  • 会议日期

    05月29日

    2024

    06月01日

    2024

  • 05月08日 2024

    初稿截稿日期

主办单位
中国矿业大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询