Enhancing Mechanical Properties Evaluation of Gangue-Based Waste Backfill with Adversarial Ensemble Robust Learning
编号:33 访问权限:仅限参会人 更新:2024-05-17 18:42:39 浏览:557次 口头报告

报告开始:2024年05月30日 19:40(Asia/Shanghai)

报告时间:10min

所在会场:[S1] Resource Development and Utilization [S1-2] Evening of May 30th

暂无文件

摘要
The waste rock produced by mining pollutes the environment. However, transforming waste rock into backfill material can not only reduce pollution but also alleviate surface subsidence. The mechanical properties of backfill materials are crucial for surface protection. Therefore, in this study, a large-scale dataset based on gangue and tailings as backfill materials was established through experiments and collection. An ensemble learning model was developed to assess the nonlinear effects of 43 dimensional factors on the mechanical properties. Different backfill materials, preparation methods, and measurement errors can lead to significant differences in mechanical properties, which can easily affect the accuracy of evaluations. Hence, we proposed a heuristic adversarial perturbation method to enhance the model on differentiated data Through an iterative approach, an ensemble robust support vector regression model (ERSVR) was established. The model's robustness was studied under different integration levels, disturbance patterns, disturbance levels, and defense levels. This model can adaptively evaluate the mechanical differences of backfill materials in both coal and non-coal mining contexts. Compared to single machine learning models and conventional ensemble models, ERSVR has a mean square error of 0.05 and a correlation coefficient of 0.95, demonstrating better robustness and accuracy. This study plays a promoting role in establishing large models in the field of mining waste.
关键词
Mining waste, Backfill material, Ensemble learning, Robustness, Mechanical properties
报告人
Peitao SHI
China University of Mining and Technology

稿件作者
培涛 时 中国矿业大学
吉雄 张 中国矿业大学
浩 闫 中国矿业大学
楠 周 中国矿业大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月29日

    2024

    06月01日

    2024

  • 05月08日 2024

    初稿截稿日期

主办单位
中国矿业大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询