Development of the Adaptive Landing and Aerial Manipulation Technology Based on the Generalized Parallel Mechanism and AI Technology
编号:523 访问权限:仅限参会人 更新:2024-05-27 14:29:54 浏览:558次 主旨报告

报告开始:2024年05月31日 09:30(Asia/Shanghai)

报告时间:30min

所在会场:[P] Plenary Session [P-2] Plenary Session Ⅱ

暂无文件

摘要
With the rapid development of technology such as computers and artificial intelligence, the technology of unmanned aerial vehicles (UAVs) in marine operations has become a current research hotspot. In recent years, rotary-wing UAVs have been widely used in many fields, such as ocean dynamic monitoring, marine disaster rescue, and maritime military confrontation, due to their low takeoff and landing requirements and hovering capabilities. However, under the effect of waves, marine platforms such as ships are constantly in a rocking state, which greatly increases the difficulty of UAV landing. 
In response to the application requirements of rotary-wing UAVs in sea platform takeoff and landing and aerial operations, a design and optimization scheme for a dual-mode aerial variable structure robot based on the generalized parallel mechanism is proposed. Two general performance indexes, terrain adaptability and landing stability, are proposed to evaluate the landing performance of adaptive landing gear.
A general method for constructing a virtual parallel model has been proposed to describe the dynamic landing process of multi-legged landing gear on offshore platforms, and an adaptive buffering landing control algorithm is designed. To achieve better buffering effects, a search method for the non-rebound damping parameter is developed to determine the damping parameter of the system based on the landing gear state at the moment of landing. An adaptive buffering landing control system is established based on the optimized four-degree-of-freedom variable structure robot, and prototype experiments are conducted to verify the effectiveness of the control strategy and the advantages of the non-rebound damping parameter.
关键词
暂无
报告人
Dan ZHANG
Fellow of the Canadian Academy of Engineering, Chair Professor of Intelligent Robotics and Automation, and Director of Consortium for Intelligent Robotics Research at the Hong Kong Polytechnic University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月29日

    2024

    06月01日

    2024

  • 05月08日 2024

    初稿截稿日期

主办单位
中国矿业大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询