Disinfectants Synergistically Drive Bacterial Evolution Towards Higher Resistance and Pathogenicity
编号:93 访问权限:仅限参会人 更新:2024-05-19 15:28:55 浏览:366次 口头报告

报告开始:2024年05月31日 15:40(Asia/Shanghai)

报告时间:15min

所在会场:[S9] Environmental Pollution Control and Ecological Restoration [S9-2] Afternoon of May 31st

暂无文件

摘要
Disinfectant-microorganism interactions have posed increasing environmental and ecological concerns since the COVID-19 pandemic broke out. Previous studies have reported that disinfectant can promote horizontal transfer of antibiotic resistance genes. However, little is known about whether these disinfectants and in particular their combination could drive bacterial antimicrobial resistance (AMR) evolution and pathogenicity during long-term exposure. Here, we did 30-day stepwise exposure experiment to investigate the impacts of the commonly used disinfectants polyhexamethylene guanidine (PHMG), benzalkonium chloride (BAC), and their combination on AMR development of wild-type Escherichia coli. The results reveal that both disinfectants induced pan drug resistance to antibiotics and disinfectants. The coexistence of both disinfectants synergistically induced much higher resistance levels. We found that these disinfectants induced multiple mutations in antibiotic-related genes such as rpoS, crp, and fimE, primarily by stimulating excessive oxidative stress and cell membrane permeability. Phenotypic and transcriptomic analyses revealed that such resistance acquisition contributes to enhanced energy metabolism, biofilm formation, and cell motility. The acquired resistance mutations were associated with increased pathogenicity, as corroborated by enhanced bacterial invasion and intracellular survival in vitro, as well as a higher death rate of Galleria mellonella larvae in vivo. Our findings provide insight into the impacts of mixed disinfectants on the development of AMR evolution in the aquatic environment, and eventually the prevalence of virulence, thus broadening our understanding of both environmental and ecological risks associated with disinfectants.
 
关键词
antibiotic resistance, gene mutation, evolution, disinfectants, polyhexamethylene guanidine, benzalkonium chloride
报告人
Xi Li
Nanjing University

稿件作者
曦 李 南京大学环境学院
Luo Yi Nanjing University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月29日

    2024

    06月01日

    2024

  • 05月08日 2024

    初稿截稿日期

主办单位
中国矿业大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询