Assessing and Interpreting Perceived Park Accessibility, Usability and Attractiveness through Texts and Images from Social Media
编号:2866 访问权限:仅限参会人 更新:2024-04-12 20:20:49 浏览:330次 张贴报告

报告开始:2024年05月18日 08:15(Asia/Shanghai)

报告时间:1min

所在会场:[SP] 张贴报告专场 [sp7] 主题7、遥感与地理信息科学

暂无文件

摘要
Urban Green Spaces (UGS) are crucial to urban ecosystems, and understanding public perception is key to their effective management. While conventional survey methods are resource-intensive, Social Media Data (SMD) offers a cost-effective alternative to gathering public insights. However, current explorations into SMD's potential in assessing UGS face challenges, particularly in integrating text and image analysis and effectively filtering out irrelevant content to identify influencing factors of different dimensions. Based on a manually curated dataset, this study introduces the Park Dual-modal Perception (PDP) model, a cutting-edge approach combining SMD text and image analysis for evaluating perceived park accessibility, usability, and attractiveness, with an average accuracy of 86.81%. Utilizing SMD from 130 parks in Guangzhou, the model effectively quantifies the three dimensions, generating visualized scoring maps to aid planners in identifying parks with lower perceived scores on the urban scale. Further incorporation of SHapley Additive exPlanations (SHAP) within the PDP model can filter 82.79% irrelevant words and effectively extract 158 thematic words and 954 associated words, providing suggestions for park-level enhancement. Our findings indicate that (1) factors such as distance, travel time, ticket prices, and proximity to commercial amenities are pivotal in determining park accessibility. (2) Park usability hinges on park’s ability to serve diverse groups and provide well-maintained, multifunctional facilities. (3) Park attractiveness is closely linked with the cultural and regulatory characteristics of ecosystem services. Our methodology combines assessment and interpretation of human perception at both city and park scales. It aids city decision-makers in identifying low-quality parks and understanding the underlying reasons, thereby facilitating more informed urban planning decisions.
 
关键词
Urban green space,Public perception,Natural Language Processing,Computer vision,Social media data
报告人
赵旭凯
硕士研究生 华南理工大学

稿件作者
赵旭凯 华南理工大学
林广思 华南理工大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月17日

    2024

    05月20日

    2024

  • 03月31日 2024

    初稿截稿日期

  • 03月31日 2024

    报告提交截止日期

  • 05月20日 2024

    注册截止日期

主办单位
青年地学论坛理事会
承办单位
厦门大学近海海洋环境科学国家重点实验室
中国科学院城市环境研究所
自然资源部第三海洋研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询