71 / 2024-07-13 21:50:48
Constructing High-Fidelity Flow Field Data for a Pressurized Water Reactor Core Based on the Physics-Informed Neural Networks
CFD Analysis,Constructing High-Fidelity Flow Field Data,Physics-Informed Neural Networks
摘要录用
Huifang Zhang / Xi'an Jiaotong University
Yang Liu / Xi’an Jiaotong University
Zhuoyi Shang / University of Chinese Academy of Sciences
Yapei Zhang / Xi’an Jiaotong University
Wenxi Tian / Xi’an Jiaotong University
Suizheng Qiu / Xi’an Jiaotong University
Guanghui Su / Xi’an Jiaotong University
The thermal-hydraulic characteristics of reactor cores is crucial for ensuring reactor safety analysis. Although Computational Fluid Dynamics (CFD) simulation can provide high-fidelity data for the core flow field, it consumes enormous computational resources. Conversely, solely using the physics-informed neural networks (PINN) is insufficient to fully describe the mathematical and physical equations involved in the complex phenomena within the reactor cores. This paper proposed a method for constructing high-fidelity flow field data for reactor cores: using low-fidelity CFD data to initialize PINN and encoding certain mathematical and physical equations into the PINN. The method is tested using a basic cylinder flow disturbance problem and the obtained velocities and temperatures show significantly improved accuracy compared to the low-fidelity data. Then, the method is applied to construct the core flow field data.

 
重要日期
  • 会议日期

    09月23日

    2024

    09月25日

    2024

  • 09月24日 2024

    报告提交截止日期

  • 09月25日 2024

    注册截止日期

主办单位
Harbin Engineering University (HEU)
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询