1025 / 2024-09-20 08:27:09
Carbon cycle in the polar oceans based on 14C perspectives (14C in the polar oceans)
Carbon cycle,radiocarbon,polar oceans
摘要录用
Ling Fang / Northwest University
Hojung Kim / Kyungpook National University
Sunmin Oh / Seoul National University
Minkyoung Kim / Kyungpook National University
The development of 14C measurement techniques and icebreaking research vessels especially encourage and support polar research using 14C. Research examining 14C in polar oceans in the context of climate change has led to considerable insight into the marine carbon cycle. The Amundsen Sea, in West Antarctica, and Kongsfjorden are experiencing rapid ice melting because of a warming climate. As found in previous studies conducted in these seasonally ice-free areas, nutrients released from melting ice sheets and upwelled by buoyant melt water stimulate surface primary production, which in return increases the surface uptake of CO2 in these regions. To address this carbon discharge, we conducted radiocarbon analysis of dissolved organic carbon in water samples collected near the melting ice shelf in the Amundsen Sea and Kongsfjorden. Our finding indicates the deep water in the regions is going through a biological process under the influence of meltwater input in the Amundsen Sea. Further sampling will be needed for the investigation of the role of meltwater in downstream ecosystems. The impact of warming induced melting sea ice and glaciers on marine biogeochemical cycles, future environmental challenges and research directions have also been summarized. The limitations of existing 14C research in polar regions can be addressed through well-designed and continuous investigation, data and sample sharing, and the development of state-of-the-art 14C measurement techniques.

 
重要日期
  • 会议日期

    01月14日

    2025

    01月17日

    2025

  • 09月27日 2024

    初稿截稿日期

  • 12月14日 2024

    注册截止日期

主办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询