125 / 2024-09-09 09:42:57
Holocene geomorphological evolution of a sediment-starved coastal embayment in response to sea level change: Insights from the Qing'ao Embayment, southern China
Sediment-starved coastal embayment, Sedimentary environment, Sea level change, Holocene, Sediment supply
摘要待审
Yu Fengling / Xiamen University
Switzer Adam / Nanyang Technological University
Zheng Zhuo / Sun Yat Sen University
Chen Bishan / Lingnan Normal University
Pile Jeremy / Nanyang Technological University
Jol Harry / University of Wisconsin – Eau Clair
Aiming to gain a better understanding of the response of sediment-starved coastal systems to the climate-driven sea level change, this study examines the Holocene evolution history of Qing'ao Embayment, southern China, as a case study. Results suggest three distinct stages of the evolution history. This evolution model suggests that the rates of sea level change and sediment accretion are the two major controlling factors for the Holocene geomorphological evolution of sediment-starving coastal systems.

Comparison of the evolution of Qing'ao embayment with sediment-supply rich large-river estuary/deltas reveals unique features in the response to Holocene sea level change of this sediment-starved embayment: During the early Holocene marine transgression, sediment starts to accumulate in the small embayment around 8400 cal yr BP, hundreds of years later than in large river estuaries. During 8400–6000 cal yr BP, sediment accretion rate remains dramatically lower than sea level rise rate, which results in the quick growth of sediment accommodation space during this stage. Around 6000 cal yr BP, though sea level has remained relatively stable and largeriver deltas have been growing for about 1000 years, the sediment-starved embayment was still under shallow marine and/or open bay conditions. At 3000 cal yr BP, shoreline started to prograde in sediment-starved embayment, which is about 3000 years later than large river deltas. Finally, agricultural activity started around 1300 cal yr BP in the embayment, thousands of years later than large river deltas. Limited or minimal fluvial sediment supply to the small embayment has constrained the land expansion during the sea level stabilization since mid-Holocene, and the limited living space might result in the much later agricultural activity in such coastal system.

Due to the different balances between sea level change and sediment flux, sediment-starved coasts are expected to be under higher risks than large river deltas. However, earlier and more extensive human activities in large river basins have resulted in the reduction of sediment discharge that heighten the risks of large river deltas against future sea level rise. Thus, more attention should be paid to the coastal sediment supply budgets in the context of the background of rising sea level.
重要日期
  • 会议日期

    01月14日

    2025

    01月17日

    2025

  • 09月27日 2024

    初稿截稿日期

  • 12月14日 2024

    注册截止日期

主办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询