El Niño and the Southern Oscillation (ENSO) have a worldwide impact on seasonal to yearly climate. However, there are decadal variations in the seasonal prediction skill of ENSO in dynamical and statistical models. The shortcomings of models mean that it is very important to study ENSO seasonal predictability and its decadal variation using observational/reanalysis data. We quantitatively estimate the seasonal predictability limit (PL) of ENSO from 1900 to 2015 using Nonlinear local Lyapunov exponent (NLLE) theory with an observational/reanalysis dataset and explore its decadal variations. The mean PL of sea surface temperature (SST) is high in the central/eastern tropical Pacific and low in the western tropical Pacific, reaching 12–15 and 7–8 months, respectively. The PL in the tropical Pacific varies on a decadal timescale, with an interdecadal standard deviation of up to 2 months in the central tropical Pacific that has similar spatial structure to the mean PL. Taking the PL of SST in the Niño 3.4 region as representative of the PL in the central/eastern tropical Pacific, there are clearly higher values in the 1900s, mid-1930s, mid-1960s, and mid-1990s, and lower values in the 1920s, mid-1940s, and mid-2010s. In the framework of NLLE theory, the PL is determined by the error growth rate (representing the dissipation rate of the predictable signal) and the saturation value of relative error (representing predictable signal intensity). We reveal that the spatial structure of the mean PL in the tropical Pacific is determined mainly by the error growth rate. The decadal variability of PL is affected more by the variation of the saturation value of relative error in the equatorial Pacific, whereas the error growth rate cannot be ignored in the PL of some regions. As an important source of predictability in ENSO dynamics, the relationship between warm water volume and SST in the Niño 3.4 region has a critical role in the decadal variability of PL in the tropical Pacific through the error growth rate and saturation value of relative error. This strong relationship reduces the error growth rate in the initial period and increases the saturated relative error, contributing to the high PL.