Enhancing Sediment Model by Incorporating Spatial-Temporal Variability in Particle Size and Settling Velocity Using Machine Learning Coupled with Numerical Models
编号:358 访问权限:仅限参会人 更新:2024-10-18 06:34:33 浏览:36次 拓展类型1

报告开始:2025年01月16日 15:20(Asia/Shanghai)

报告时间:15min

所在会场:[S24] Session 24-Estuaries and coastal environments stress - Observations and modelling [S24-3] Estuaries and coastal environments stress - Observations and modelling

暂无文件

摘要
Accurate prediction of sediment settling is critical for management of coastal ecosystems, but complex estuarine processes that influence sediment deposition and erosion present a major modelling challenge. This study explores a more efficient approach to simulating how particle size changes with dynamic sediment flocculation and thereby determines settling velocity. Environmental controls on in-situ particle size (median particle size D50) were investigated using regression model trained on coeval measurements of salinity, shear rate, and suspended sediment concentration (SSC). A machine learning (ML) model was developed and integrated into a fully coupled current-wave-sediment model to simulate flocculation-dimensional response in particle size due to variations in shear rate, salinity and SSC. The integrated model framework demonstrates its reliability and accuracy when evaluated against the in-situ measurements, SSC derived from satellite observations, and a parametric flocculation model that only relates settling velocity to SSC.
 
关键词
Machine Learning; sediment modelling; sediment flocculation; settling velocity; remote sensing; in-situ measurement
报告人
Ziyu Xiao
Researcher CSIRO

稿件作者
Ziyu Xiao CSIRO
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    01月14日

    2025

    01月17日

    2025

  • 09月27日 2024

    初稿截稿日期

  • 12月14日 2024

    注册截止日期

主办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询