Enhancing subseasonal surface air temperature and heat wave prediction skill in China by considering scale interaction within a deep learning model
编号:642 访问权限:仅限参会人 更新:2024-10-12 20:09:34 浏览:65次 口头报告

报告开始:2025年01月15日 09:45(Asia/Shanghai)

报告时间:15min

所在会场:[S4] Session 4-Extreme Weather and Climate Events: Observations and Modeling [S4-1] Extreme Weather and Climate Events: Observations and Modeling

暂无文件

摘要
Accurate subseasonal predictions of high surface air temperature (SAT) and heat wave events 10–30 days in advance are crucial for mitigating the risks of extreme weather; however, they pose a challenge for current operational models. In this research, we implemented a convolutional neural network (CNN)-based deep learning model to leverage the modulations in China's SAT by precursor signals across various timescales to enhance predictions of future SAT and heat wave events. Our CNN model demonstrated superior ability in capturing the evolution of SAT anomalies and the occurrence of heat wave events with forecast lead times beyond 20 days, compared with that of the operational models of the China Meteorological Administration and European Centre for Medium-Range Weather Forecasts. Explainability analysis highlighted that subseasonal SAT predictability in China is primarily driven by large-scale intraseasonal perturbations from both lower- and higher-latitude regions of Eurasia, as well as interannual variability. Rather than focusing solely on specific timescale components, our findings suggest that considering interactions across multiple timescales could enhance subseasonal predictability.
关键词
heat wave,subseasonal prediction,China,deep learning
报告人
Jiehong Xie
PhD Student Sun Yat-Sen University

稿件作者
Jiehong Xie Sun Yat-Sen University
Pang-Chi Hsu Nanjing University of Information Science and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    01月14日

    2025

    01月17日

    2025

  • 09月27日 2024

    初稿截稿日期

  • 12月14日 2024

    注册截止日期

主办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询