Fault diagnosis of Integrated Core Processor in avionics system based on CNN-Transformer
编号:5 访问权限:仅限参会人 更新:2024-10-23 11:39:03 浏览:103次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
The structure and function of Integrated Core Processor (ICP) of the avionics system are relatively complex, while traditional fault diagnosis methods perform low accuracy and low efficiency. To address these issues, this paper proposes an enhanced CNN-Transformer algorithm for fault diagnosis of the integrated core processor. Initially, CNN model is employed to extract spatial features, reduce computational complexity, and preserve essential data. Subsequently, Transformer model utilizes self-attention calculations to capture relationships and characteristics within the input sequence. Finally, a fully connected neural network is applied to classify the faults. The method was validated using multiple datasets recorded by the Fiber Channel bus, achieving a diagnostic accuracy of 96.09%, outperforming other comparative approaches.
关键词
avionics system, Integrated Core Processor, fault diagnosis, CNN-Transformer, Fiber Channel bus.
报告人
ZhaoXinbo
Assistant Engineer Chengdu Aircraft Design and Research Institute

稿件作者
ZhaoXinbo Chengdu Aircraft Design and Research Institute
JiaoLu Chengdu Aircraft Design and Research Institute
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询