Demagnetization Fault Diagnosis Based on Feature Extraction and Stacking Ensemble Learning for Permanent Magnet Generator
编号:90 访问权限:仅限参会人 更新:2024-10-23 10:34:39 浏览:39次 口头报告

报告开始:2024年11月02日 11:10(Asia/Shanghai)

报告时间:20min

所在会场:[P5] Parallel Session 5 [P5-2] Parallel Session 5(November 2 AM)

暂无文件

摘要
During the operation of a permanent magnet wind turbine, magnet demagnetization failure may occur, which directly affects the normal operation of the wind turbine and adversely affects wind power generation. This paper proposes a demagnetization fault diagnosis method for permanent magnet generators based on feature extraction and stacking integrated learning. A permanent magnet generator with a power of 25kW was used to conduct a demagnetization fault simulation experiment. Collect the current signal of the generator and extract features such as time domain, frequency domain, entropy and singular value. The different extracted features are trained through the Stacking integrated learning framework to realize pattern recognition of demagnetization faults and determine the operating status of the generator, thereby realizing demagnetization fault diagnosis of permanent magnet generator.
关键词
permanent magnet synchronous generator,demagnetization fault,feature extraction,ensemble learning
报告人
ZhangSichao
student Xi’an Jiaotong University

稿件作者
ZhangSichao Xi’an Jiaotong University
ChenYu Xi'an Jiaotong University
LiangFeng Xi'an Jiaotong University
DuSiyu Xi'an Jiaotong University
ShahbazNadeem Xi’an Jiaotong University
ZhaoShouwang Xi’an Jiaotong University
LiChong Xi’an Thermal Power Research Institute Co. Ltd
DengWei Xi’an Thermal Power Research Institute Co. Ltd
ZhaoYong Xi’an Thermal Power Research Institute Co. Ltd
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询