An Interpretable Deep Learning model for Quantifying Catalyst Layer Structural and Operating Condition Impacts on Performance in PEM Fuel Cells
编号:122 访问权限:仅限参会人 更新:2025-09-30 11:22:08 浏览:3次 口头报告

报告开始:2025年10月12日 16:20(Asia/Shanghai)

报告时间:15min

所在会场:[S8] AI, surrogate modeling and optimization [S8-2] Session 8-2

暂无文件

摘要
The high computational cost associated with the highly coupled, nonlinear multi-physics processes in Proton Exchange Membrane Fuel Cells (PEMFCs) poses a significant challenge for design and optimization. To guide the optimal design of low-Pt membrane electrode, this study proposes an interpretable deep learning surrogate modeling, which enables rapid prediction and quantitative analysis of the influence significance of both cathode catalyst layer (CCL) structures and operating conditions on performance. In this model, the datasets with different operating conditions and CCL parameters are generated by employing Latin hypercube sampling and PEMFC multi-physics modeling. Furthermore, the dataset is trained by convolutional neural network, and the trained model is applied for interpretable quantitative analysis by Shapley Additive exPlanations (SHAP). The results indicate that surrogate model can realize faster performance prediction and the findings reveal that CL parameters contribute more significantly to overall performance. Furthermore, temperature exhibits a more pronounced impact on membrane hydration, necessitating electrode optimization designs with adaptability across operating temperature ranges.
 
关键词
PEMFCs, Multi-physics Model, Deep Learning, SHAP, Surrogate Model and optimization
报告人
Zhao Liu
Xi'an Jiaotong University, China

稿件作者
Zhao Liu Xi'an Jiaotong University
Wei−Wei Yang Xi'an jiaotong university
Wangxin Yang Xi'an Jiaotong University
Zhiguo Qu Xi'an Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月09日

    2025

    10月13日

    2025

  • 08月30日 2025

    初稿截稿日期

  • 10月13日 2025

    注册截止日期

主办单位
Huazhong University of Science and Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询