Genetic-AlgorithmBased Topology Optimization for Efficient Cooling of HVDC Equipment
编号:139 访问权限:仅限参会人 更新:2025-09-30 11:05:45 浏览:4次 口头报告

报告开始:2025年10月12日 11:05(Asia/Shanghai)

报告时间:15min

所在会场:[S3] Computational heat transfer and fluid dynamics [S5] Session 5: Heat exchangers

暂无文件

摘要
This study proposes a Genetic Algorithm-based Topology Optimization (GATO) framework for enhancing the thermal management of High Voltage Direct Current (HVDC) equipment. The methodology integrates genetic algorithms with topology optimization to automatically generate complex internal cooling channel structures within a fixed heat sink geometry. Using binary matrix representation, the framework iteratively evolves efficient flow paths under multi-source heat loads. The optimized designs are evaluated via 3D CFD simulations demonstrating superior performance in reducing peak temperatures and improving thermal uniformity. Dual termination criteria—objective function convergence and structural stabilization—ensure both accuracy and robustness. Results highlight the GATO method's scalability and effectiveness, offering a systematic and intelligent strategy for advanced thermal design in high-power electronic systems.
关键词
Genetic algorithm,Topology Optimization (TO),Computational fluid dynamics,Multi-source heat dissipation,High-voltage direct current
报告人
Zongdao Piao
Changwon National University, South Korea

稿件作者
PIAO ZONGDAO 国立昌原大学
Sajan Tamang 国立昌源大学
Park Heesung 国立昌原大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月09日

    2025

    10月13日

    2025

  • 08月30日 2025

    初稿截稿日期

  • 10月13日 2025

    注册截止日期

主办单位
Huazhong University of Science and Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询