Research on Photovoltaic Power Output Forecasting Along High-Speed Railway
编号:116 访问权限:仅限参会人 更新:2025-11-03 11:47:28 浏览:25次 口头报告

报告开始:2025年11月09日 09:45(Asia/Shanghai)

报告时间:15min

所在会场:[S1] 1. Renewable energy system [S1] 1.Renewable energy system

暂无文件

摘要
Accurate photovoltaic (PV) power forecasting is crucial for the efficient utilization of solar energy and the provision of low-carbon power in electrified railways. To improve prediction accuracy and reduce lag caused by the stochastic fluctuations of railway-side PV systems, this paper proposes a hybrid GWO-VMD-CNN-BiGRU-Attention model. First, the Grey Wolf Optimizer (GWO) optimizes the parameters of Variational Mode Decomposition (VMD), which adaptively decomposes PV output into stable sub-modal components based on fuzzy entropy (FE). Each component is then individually forecasted using a CNN-BiGRU-Attention network: the CNN extracts temporal features, the BiGRU captures dynamic patterns, and the attention mechanism highlights critical time steps. The final prediction is obtained by summing the component forecasts. Validated on real-world data from a high-speed railway, the model effectively mitigates prediction lag and outperforms benchmark methods in accuracy.
关键词
Grey Wolf Optimizer (GWO), Hybrid model forecasting, Photovoltaic power forecasting ,Variational Mode Decomposition (VMD)
报告人
Shengfei Gao
Lanzhou Jiaotong University

稿件作者
Shengfei Gao 兰州交通大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月30日 2025

    初稿截稿日期

  • 11月10日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询