Data-Driven Decision-Making Method for Security-Constrained Unit Commitment
编号:151 访问权限:仅限参会人 更新:2025-11-03 11:42:26 浏览:10次 主旨报告

报告开始:2025年11月08日 09:30(Asia/Shanghai)

报告时间:30min

所在会场:[O] Opening Ceremony & Keynote Speech [K] Opening Ceremony & Keynote Speech

暂无文件

摘要
This paper investigates data-driven decision-making methods for Security-Constrained Unit Commitment (SCUC) in power systems. Traditional physics-model-driven SCUC (PMD-SCUC) suffers from limited adaptability and efficiency in complex decision-making scenarios. To overcome these issues, a data-driven SCUC (DD-SCUC) framework is proposed. First, a hybrid deep learning model combining data-driven mapping and physical constraints is developed to predict unit outputs from load profiles, with clustering preprocessing to enhance accuracy. Second, an improved E-Seq2Seq architecture with multiple Encoder-Decoder networks is introduced to process elastic multi-sequence data, improving adaptability and precision. Furthermore, a composite decision-making method is designed for typhoon scenarios, integrating source-grid-load coordination based on game-theoretic optimization to enhance system resilience. Simulation results based on real-world grid data verify the feasibility and effectiveness of the proposed methods in improving decision accuracy, computational efficiency, and operational robustness.
关键词
暂无
报告人
Nan Yang
China Three Gorges University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月30日 2025

    初稿截稿日期

  • 11月10日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询