Deep Learning-based Online Transient Stability Assessment and Emergency Control in Power Systems
编号:152 访问权限:仅限参会人 更新:2025-11-03 11:42:33 浏览:16次 主旨报告

报告开始:2025年11月08日 10:20(Asia/Shanghai)

报告时间:30min

所在会场:[O] Opening Ceremony & Keynote Speech [K] Opening Ceremony & Keynote Speech

暂无文件

摘要
With the accelerated development of China's new power system, the widespread integration of renewable energy at high penetration levels and the significant increase in power electronic device adoption have led to power grid dynamic characteristics that exhibit strongly time-varying, nonlinear, and tightly coupled multi-time-scale features. Against this backdrop, rotor angle stability and voltage stability issues are increasingly intertwined and mutually influential, making transient stability conditions more complex. Traditional methods relying on mechanistic analysis and time-domain simulation face significant challenges in balancing computational efficiency and model complexity, struggling to meet the rapid response requirements of online analysis and real-time control. To address these challenges, a new framework for transient stability assessment and control characterized as mechanism-driven and data-enhanced is proposed. This framework deeply integrates power grid dynamic response mechanisms with advanced deep learning technologies, establishing an efficient and accurate stability evaluation model and a control strategy generation mechanism. It aims to enhance the capability for transient stability analysis and decision-making in the new power system, providing crucial technical support for secure and stable system operation.
关键词
暂无
报告人
Zongsheng Zheng
Sichuan University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月30日 2025

    初稿截稿日期

  • 11月10日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询