Boosting Power System Operation Economics via Closed-Loop Predict-and-Optimize
编号:153 访问权限:仅限参会人 更新:2025-11-03 11:42:40 浏览:15次 主旨报告

报告开始:2025年11月08日 10:50(Asia/Shanghai)

报告时间:30min

所在会场:[O] Opening Ceremony & Keynote Speech [K] Opening Ceremony & Keynote Speech

暂无文件

摘要
As an important application in the power system operation and electricity market clearing, the network-constrained unit commitment (NCUC) problem is usually executed by Independent System Operators (ISO) in an open-looped predict-then-optimize (O-PO) process, in which an upstream prediction (e.g., on renewable energy sources (RES) and loads) and a downstream NCUC are executed in a queue. However, in the O-PO framework, a statistically more accurate prediction may not necessarily lead to a higher NCUC economics against actual RES and load realizations. To this end, we present a closed-loop predict-and-optimize (C-PO) framework for improving the NCUC economics. Specifically, the C-PO leverages structures (i.e., constraints and objective) of the NCUC model and relevant feature data to train a cost-oriented RES prediction model, in which the prediction quality is evaluated via the induced NCUC cost instead of the statistical forecast errors. Therefore, the loop between the prediction and the optimization is closed to deliver a cost-oriented RES power prediction for NCUC optimization.
关键词
暂无
报告人
Yikui Liu
Sichuan University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月30日 2025

    初稿截稿日期

  • 11月10日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询