Lightweight express package detection with G-YOLO feature fusion
编号:162 访问权限:仅限参会人 更新:2025-11-03 11:40:05 浏览:18次 张贴报告

报告开始:2025年11月09日 09:11(Asia/Shanghai)

报告时间:1min

所在会场:[P] Poster presentation [P6] 6.AI-driven technology

暂无文件

摘要
Addressing the challenges posed by low accuracy, a high false detection rate, and the need for lightweight solutions arising from susceptibility to noise and occlusion in complex scenarios, we propose an enhanced method for detecting express packages based on YOLOv5. To strike a more optimal balance between model performance and lightweight design, we introduce the GhostCTRBottleneck module. This module is designed to comprehensively capture feature dependencies while concurrently reducing computational overhead and parameter complexity. Our proposed method demonstrates a 2.5% increase in the MAP index compared to the original YOLOv5s, as demonstrated on a self-built express parcel dataset. Simultaneously, the model's weight, computational load, and parameter count are effectively reduced. Rigorous experiments conducted on the PASCAL VOC 2012 dataset underscore the efficacy and robustness of our method.
 
关键词
YOLOv5, Express package detection, Lightweight, GhostCTRBottleneck
报告人
Junfang Zhang
Yanching Institute of Technology

稿件作者
Junfang Zhang Yanching Institute of Technology
meng jiao wang Yanching Institute of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月30日 2025

    初稿截稿日期

  • 11月10日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询