A deep modeling approach based on time-frequency domain feature extraction
编号:24 访问权限:仅限参会人 更新:2025-10-11 22:15:08 浏览:1次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Aiming at the problem of difficulty in extracting fault features of wind turbines under complex operating conditions, this study introduces a method for identifying wind turbine bearing faults based on vibration signals, extracting statistical features in the time domain, then performing a Fast Fourier Transform (FFT) on the original signal, and extracting the frequency domain features as well as statistical features after the FFT. The main features in the time-frequency domain features are then selected using chi-square test. In this study, deep confidence neural network (DBN) is used to classify the bearing faults. Finally, a comparative study is carried out by comparing the classification results with those of Support Vector Machines (SVM) and Extreme Learning Machines (ELM), and the results show that the recognition accuracy of the method proposed in this study is 99.8%, which has a higher classification performance.
 
关键词
Wind turbines; FFT; Feature Extractions; Deep Belief Network
报告人
meng jiao wang
Teaching Assistant Yanching Institute of Technology

稿件作者
meng jiao wang Yanching Institute of Technology
Junfang Zhang Yanching Institute of Technology
Dongdong Zhao Yanching Institute of Technology
Xiangjie Wang Yanching Institute of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月12日 2025

    初稿截稿日期

  • 10月20日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询