Self-Learning Optimal Control of Maglev Levitation Systems with Track Irregularity and Speed Constraints: A Reinforcement Learning driven Method for Parameters Adjustment
编号:27 访问权限:仅限参会人 更新:2025-10-11 22:16:19 浏览:5次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
The maglev train achieves frictionless stable levitation. Nevertheless, track irregularities and high speed lead to fluctuations in the levitation gap. Thus, the control parameters of the levitation system must be adjusted to ensure safe operation. At present, the parameters’ adjustment mainly relies on expert experience and not adapted to dynamic changes. Therefore, this study proposes a reinforcement learning driven method for adjustment of the levitation system control parameters. Firstly, the levitation model considering speed and track irregularities is established. Secondly, a reinforcement learning driven control parameter adjustment method is presented. The control parameters are modified in real-time. Finally, simulation verification is conducted. Three typical speed scenarios are designed to test the levitation system over irregular tracks. The results indicate that after adjustment the levitation gap fluctuations are significantly reduced. Moreover, the control performance evaluation indicators also performed exceptionally well. The method is of great significance for ensuring the stable operation of maglev trains across the entire speed range.
关键词
Maglev trains, levitation system, reinforcement learning, parameters adjustment, track irregularities.
报告人
Mingda Zhai
Mr National University of Defense Technology

稿件作者
Mingda Zhai National University of Defense Technology
Lu Zhang National University of Defense Technology
Zhao Xu Tongji University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月12日 2025

    初稿截稿日期

  • 10月20日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询