Online Voltage and Reactive Power Control for Regional Power Grid via Bi-Level MADRL
编号:31 访问权限:仅限参会人 更新:2025-10-11 22:17:37 浏览:7次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
The large-scale integration of renewable energy increases operational uncertainty, posing major challenges for voltage and reactive power control. This paper proposes a bi-level multi-agent deep reinforcement learning (MADRL) framework for dual-time-scale optimization in regional power grids. According to the principles of hierarchical and partitioned balance and local compensation of reactive power, upper-level substation agents are modeled within a Markov game to coordinate discrete actions, while a lower-level optimization solver determines continuous variables. To address potential instability caused by infeasible optimization during discrete exploration, a hierarchical reward scheme is introduced to enhance training robustness. By integrating optimization results with reward signals, the framework achieves effective coordination of discrete-continuous and slow-fast control decisions. Simulation results demonstrate that the proposed control strategy significantly outperforms benchmark methods in both decision-making efficiency and solution quality.
关键词
voltage and reactive power control; multi-agent; deep reinforcement learning; bi-level optimization framework
报告人
Heguizhi Yan
No Chongqing University

稿件作者
Heguizhi Yan Chongqing University
Wei Yan Chongqing University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月12日 2025

    初稿截稿日期

  • 10月20日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询