Identifiability and Parameter Estimation of Data Center Thermal Models Based on Trajectory Sensitivities
编号:35 访问权限:仅限参会人 更新:2025-10-11 22:19:01 浏览:4次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
As data centers grow in scale and computing density, thermal management becomes increasingly critical. Accurate thermal modeling is essential for efficient cooling and energy optimization, yet key thermal parameters are often difficult to measure directly. This paper proposes a dynamic thermal model incorporating the central processing unit (CPU), server chassis, and air temperatures of the server room  to describe system evolution over time. Trajectory sensitivity analysis is introduced to assess the influence of each parameter and guide identifiability analysis. A nonlinear least squares problem is formulated and solved using the Levenberg-Marquardt algorithm to estimate parameters. To address limited data and structural identifiability, a subset selection method is applied to identify estimable parameters. Simulations with synthetic data validate the approach. Results show that attempting to estimate unidentifiable parameters leads to sensitivity to initial conditions and unreliable outcomes. This highlights the importance of identifiability analysis and careful parameter selection, which can be more impactful than refining estimation algorithms.
关键词
data center thermal modeling,identifiability,parameter estimation,trajectory sensitivity analysis
报告人
Xuezao Wang
master candidate Southeast University

稿件作者
Xuezao Wang Southeast University
Yijun Xu Southeast University
Wei Gu Southeast University
Yi Qiu Southeast University
Zeming Jiang Unicom Payment Co., Ltd.
Shixing Ding Yanshan University
Zhigang Lu Yanshan University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月12日 2025

    初稿截稿日期

  • 10月20日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询