Synchrophasor Data Anomaly Detection Via Quantum Generative Adversarial Networks
编号:45 访问权限:仅限参会人 更新:2025-10-11 22:31:37 浏览:3次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
This paper proposes a novel method for detecting anomalies in Phasor Measurement Units (PMUs) data leveraging quantum computing techniques. As the quality of PMUs data has become a fundamental prerequisite for power system analysis, anomaly detection is of critical importance. Among various approaches, Generative Adversarial Networks (GANs)-based methods are attracting widespread attention due to their unsupervised learning capability. However, they inevitably suffer from the problem of an excessive number of trainable parameters. To address this issue, we introduce for the first time a hybrid Quantum Generative Adversarial Networks (QGANs) for anomaly detection in PMUs data. Specifically, the generator in classical GANs is constructed using Quantum Neural Networks (QNNs). Benefiting from the unique properties of quantum mechanics, QNNs exhibit stronger expressivity while requiring fewer trainable parameters than their classical counterparts. Simulation results validate the effectiveness of the proposed method.
关键词
anomaly detection,PMUs data,Quantum Generative Adversarial Networks,Quantum Neural Networks
报告人
Yongbing Yao
Graduate Student Southeast University

稿件作者
Yongbing Yao Southeast University
Yijun Xu Southeast University
Wei Gu Southeast University
Lamine Mili Virginia Tech
Shuai Lu Southeast University
Zongsheng Zheng Sichuan University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月12日 2025

    初稿截稿日期

  • 10月20日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询