Modal Analysis and Suppression of Sub-synchronous Oscillation in Doubly-fed Wind
编号:53 访问权限:仅限参会人 更新:2025-10-11 22:35:01 浏览:2次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
To address the "curse of dimensionality" inherent in traditional sub-synchronous oscillation (SSO) analysis methods and to effectively mitigate SSO, we propose a damping ratio regression model alongside the design of a sub-synchronous damping controller (SSDC). Initially, the TLS-ESPRIT algorithm was employed to extract the principal modes of SSO. Subsequently, a damping ratio regression model was established using the principal component analysis (PCA)-random forest (RF) algorithm. The regression model was assessed to identify the dominant factors influencing SSO in wind farms. Thereafter, the SSDC was integrated into the static var generator (SVG) and optimized via a genetic algorithm (GA). Finally, a double-fed wind farm simulation model was implemented in PSCAD. The results demonstrate that the damping ratio regression model effectively identifies the dominant factors influencing SSO. The optimized sub-synchronous damping controller effectively resolves the issue of traditional SSDCs failing to provide positive damping under varying operating conditions and exhibits rapid suppression capabilities.
关键词
sub-synchronous oscillation (SSO),Damping ratio regression model,Modal identification,Sub-synchronous damping controller,Genetic algorithm
报告人
Chongyang Liu
Graduate student Shandong University of Science and Technology

稿件作者
Yongjin Yu Shandong University of Science and Technology
Chongyang Liu Shandong University of Science and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月12日 2025

    初稿截稿日期

  • 10月20日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询