Named Entity Recognition in Electronic Medical Records Based on Transfer Learning
编号:54 访问权限:仅限参会人 更新:2025-10-11 22:35:10 浏览:2次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
To address the challenges of scarce labeled data and cross-disease knowledge transfer in named entity recognition (NER) tasks for Chinese electronic medical records, this paper proposes a transfer learning method based on the BERT-BiLSTM-CRF model to explore cross-disease knowledge transfer strategies. By comparing experimental results in non-transfer and transfer learning scenarios, we systematically explore the impact of the number of target domain samples and the ratio of source and target domain data on model performance. Baseline model experiments show that differences in data distribution have a significant impact on entity recognition performance; after introducing transfer learning, the model's recognition performance in the target domain (especially in small sample scenarios) is significantly improved. This research provides an effective technical solution for low-resource medical text processing.
关键词
BERT-BiLSTM-CRF,Chinese electronic medical records,named entity recognition,transfer learning
报告人
shuyu qian
学生 西南民族大学

稿件作者
shuyu qian 西南民族大学
Duyu Liu 西南民族大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月12日 2025

    初稿截稿日期

  • 10月20日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询