EEG Artifact Detection in Epilepsy Using Hybrid Deep and Machine Learning
编号:84 访问权限:仅限参会人 更新:2025-10-11 22:48:53 浏览:2次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Electroencephalography (EEG) for epilepsy inevitably contains artifacts that may obscure epileptiform discharges or, in some cases, provide valuable diagnostic clues. Accurate classification of different artifact types is therefore clinically important. This paper proposes a hybrid artifact classification method that integrates deep learning and handcrafted features. A CNN-CBAM-LSTM network is employed to capture temporal features, while time-domain, frequency-domain, and entropy-based handcrafted features are extracted to complement the representation. The combined feature set is refined using the Relief-F algorithm to reduce redundancy and enhance discriminability, followed by a random forest classifier for final recognition. Experiments were conducted on long-term clinical EEG recordings, including six artifact types: eye movement, muscle, chewing, electrode, blinking, and rhythmic chewing. Results show that the proposed method achieves 97.8% classification accuracy, surpassing existing approaches. By leveraging both the automatic feature learning capability of deep models and the interpretability of handcrafted features, the method demonstrates high accuracy and strong generalization potential for artifact classification in epileptic EEG analysis.
关键词
Machine learning,Deep learning,Feature extraction,Feature selection,Classification
报告人
Qindong Yu
student Southwest Jiaotong University

稿件作者
Qindong Yu Southwest Jiaotong University
Chuan Lin southwest Jiaotong university
Chao Wang Southwest Jiaotong University
Ming Wen the Third People’s Hospital of Chengdu
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月12日 2025

    初稿截稿日期

  • 10月20日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询