Research on Signal Noise Reduction Methods for Force Sensors
编号:90 访问权限:仅限参会人 更新:2025-10-11 22:50:25 浏览:57次 张贴报告

报告开始:2025年11月09日 09:06(Asia/Shanghai)

报告时间:1min

所在会场:[P] Poster presentation [P5] 5.Wireless power transfer technology

暂无文件

摘要
To address issues such as low signal-to-noise ratio and complex noise types in static measurements of force sensors, this paper proposes a noise reduction method based on
the fusion of two-layer wavelet decomposition and LMS adaptive filtering. This method first employs median filtering to eliminate isolated impulse noise as preprocessing. Subsequently, it utilizes Daubechies4 (db4) and Symlets8 (sym8) wavelet bases for two-stage cascaded wavelet decomposition and thresholding, effectively suppressing multi-frequency noise. Following this, an LMS adaptive filter intelligently suppresses residual noise. Experimental results demonstrate that this method outperforms
traditional single-wavelet denoising approaches in terms of signal-to-noise ratio (SNR) and root mean square error (RMSE). It achieves significant noise reduction while preserving signal morphological features, indicating its feasibility for processing force sensing signals.
关键词
Adaptive filtering;Force sensor signal;LMS algorithm; Signal denoising;Wavelet decomposition
报告人
qing li
Student Anhui Jianzhu University

稿件作者
qing li Anhui Jianzhu University
Huibin Cao Hefei Institutes of Physical Science Chinese Academy of Sciences
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月30日 2025

    初稿截稿日期

  • 11月10日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询