Self-Supervised Learning and Multi-Sensor Fusion for Alpine Wetland Vegetation Mapping: Bayinbuluke, China
编号:33 访问权限:仅限参会人 更新:2025-10-09 22:07:39 浏览:18次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Accurate mapping of wetland vegetation is essential for ecological monitoring and con-servation, yet it remains challenging due to the spatial heterogeneity of wetlands, the scar-city of ground-truth data, and the spread of invasive species. Invasive plants alter native vegetation patterns, making their early detection critical for preserving ecosystem integrity. This study proposes a novel framework that integrates self-supervised learning (SSL), su-pervised segmentation, and multi-sensor data fusion to enhance vegetation classification in the Bayinbuluke Alpine Wetland, China. High-resolution satellite imagery from Plan-etScope-3 and Jilin-1 was fused, and SSL methods—including BYOL, DINO, and MoCo v3—were employed to learn transferable feature representations without extensive labeled data. The results show that SSL methods exhibit consistent variations in classification performance, while multi-sensor fusion significantly improves the detection of rare and fragmented vegetation patches and enables the early identification of invasive species. Overall, the proposed SSL–fusion strategy reduces reliance on labor-intensive field data collection and provides a scalable, high-precision solution for wetland monitoring and invasive species management.
关键词
remote sensing of wetlands; self-supervised learning; multi-modal data fusion; vegetation mapping; alpine wetlands (Bayinbuluke, China); invasive plant species (IPS)
报告人
Muhammad Murtaza Zaka
研究生 中国科学院新疆生态与地理研究所

稿件作者
Muhammad Murtaza Zaka 中国科学院新疆生态与地理研究所
豫璞 赵 中国科学院新疆生态与地理研究所
阿里木 赛买提 中国科学院新疆生态与地理研究所
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月17日

    2025

    10月19日

    2025

  • 10月19日 2025

    注册截止日期

主办单位
国际数字地球学会中国国家委员会数字山地专业委员会
浙江师范大学
承办单位
中国-莫桑比克智慧农业“一带一路”联合实验室(筹)
中国科学院﹒水利部成都山地灾害与环境研究所
浙江师范大学地理与环境科学学院
浙江省地理学会
金华市科协
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询